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Fokker-Planck equation for Boltzmann-type and active particles: Transfer probability approach
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A Fokker-Planck equation with velocity-dependent coefficients is considered for various isotropic systems
on the basis of probability transitiofPT) approach. This method provides a self-consistent and universal
description of friction and diffusion for Brownian particles. Renormalization of the friction coefficient is shown
to occur for two-dimensional and three-dimensional cases, due to the tensorial character of diffusion. The
specific forms of PT are calculated for Boltzmann-type and absorption-type colligientatter are typical in
dusty plasmas and some other systefke validity of the Einstein’s relation for Boltzmann-type collisions is
analyzed for the velocity-dependent friction and diffusion coefficients. For Boltzmann-type collisions in the
region of very high grain velocity as well as it is always for non-Boltzmann collisions, such as, absorption
collisions, the Einstein relation is violated, although some other relatietermined by the structure of PT
can exist. The generalized friction force is investigated in dusty plasmas in the framework of the PT approach.
The relation among this force, the negative collecting friction force, and scattering and collecting drag forces
is established. The concept of probability transition is used to describe motion of active particles in an ambient
medium. On basis of the physical arguments, the PT for a simple model of the active particle is constructed and
the coefficients of the relevant Fokker-Planck equation are found. The stationary solution of this equation is
typical for the simplest self-organized molecular machines.
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[. INTRODUCTION ticle motion is referred to as the motion of active Brownian
particles. The dynamical and energetic aspects of motion for
Brownian dynamics nowadays is in the focus of interestthe active Brownian particles have been described recently
due to the wide new fields of applications: physical-chemicabn the basis of the Langevin equation and the appropriate
systems, so-called active walkers, e.g., cells and other oli~okker-Planck equatiof®,10]. Possibility of negative fric-
jects in biological systems, dusty plasmas with natural andion (negative values of the friction coefficigrior Brownian
artificial grains and many other systems. The characteristiparticles was regarded as a result of energy pumping. For
property of such systems is velocity-dependent friction andsome phenomenological dependence of the friction coeffi-
diffusion coefficients. The existence of the Einstein relationcient as a function of the grain’s velocity, a one-particle sta-
and even the correct specific forms of the Fokker-Planckionary non-Maxwellian distribution function was found.
equation for such systems are not still completely clarified. The traditional formulations of the nonequilibrium
In particular, attempts to use the Langevin equation as a st@rownian motion are based on some phenomenological ex-
chastic basis for derivation of the Fokker-Planck equatiorpressions for the friction and diffusion coefficients. In par-
lead to non-sign-valued result. The different forms of theticular, it means that deviations from the Einstein relation as
Fokker-Planck equation, such as so-called Ito and Stratonowvell as the velocity dependence of these coefficients are pos-
ich [1-4] ones, appear. For the systems close to equilibriumtulated and a high level of uncertainty for application of such
Brownian particles keep stationary random motion under acmodels to the real systems takes place. Recently we consid-
tion of the stochastic forces, which are compensated by thered another situation, when the kinetic coefficients can be
particle friction and thus, the work produced by the Langevincalculated explicitly on the basis of microscopically derived
sources is equal to the energy dissipated in course of thEokker-Planck equation for dusty plasmfsl,12. It was
Brownian particle motion. This energy balance is describedecently showr{13] that in the case of strong Coulomb in-
by the fluctuation-dissipation theorem in the form of the Ein-teraction of highly charged grains in dusty plasmas, due to
stein law. Obviously, the fluctuation-dissipation theorem andon absorption by grains, the friction coefficient can become
the Einstein relation can be violated in the case of nonequinegative. The necessary criterion for negative friction due to
librium systemgeven in the stationary casen particular, in  ion absorption is found aEEeZZgZi laTi>1 (hereZy, Z;
the open systems. Starting from the classical Lord Rayleiglare the charge numbers for the grains and ions, respectively,
work [5] many studies of the nonequilibrium motion of ais the grain radiusT; is the ion temperatuje The appro-
Brownian particles with an addition&hner or externalen-  priate threshold value of the grain charge was determined.
ergy supply have been performed. In particular, such studieShe stationary solution of the Fokker-Planck equation with
are of great importance in physical-chemifd)7] and bio- the velocity-dependable kinetic coefficients was obtained
logical [8] systems, in which nonequilibrium Brownian par- and the considerable deviation of such solution from the
Maxwellian distribution was demonstrated. The physical rea-
son for manifestation of negative friction in that case is clear:
*Present address: Humboldt University, 110 Invalidenstrassethe cross section for ion absorption by grain increases, when
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to the charge-dependent part of the cross section. Therefore,
for a moving highly charged grainle1), the momentum Ai(P):J dag;w(P,q), ()
transfer from ions to the grain in the direction of grain ve-
locity can be higher than in the opposite direction. 1

In th!s paper we deveI(_)p more general approach, basgd on Bij(P)= ff dgq;q;w(P,q). (4)
probability transition, to simplify the Fokker-Planck equation
and to calculate the velocity-dependent friction and diffusion » i )
coefficients for the different systems. On that way we find L€t uS assume that probability transitietP, q) is a func-
various forms of probability transitioPT) for Boltzmann-  Uon of only two vectors® andq. It means, for example, that
type and for absorption collision integrals. The crucial pecu-there is no, let us say, drift velocity of the media surrounding
liarity of the exact expressions for the mentioned coefficientdn® grain, as well as some inner vector inside the grain,
follows from the exact representation of these coefficientdVhich can influence the probability transition. For that case,
through the function of probability transition: it is impossible the general structure of the coefficiedsandB;; is evident:
to define the coefficients independently not only for the pro-
cesses, which describe the systems close to thermodynamic Ai(P)=PiB(P),
equilibrium when the Einstein relation & priori valid, but
also for the systems in which there is a stationary but a PiP;
nonequilibrium state, or for the systems far from equilib- Bij(P)= FBH(PH
rium; any rigorous approximate model of the Fokker-Planck

equation has to be based on self-consistent expressions fWhere,B(P) By(P), andB, (P) are the functions of modu
3 3 1 -

the;:(;'r?r;)?:g ?:aﬁl\j\,séogo%c;?gg?zn\t;f dt()aailz (isor(;ftr;e :nT.or fa}us P. Let us consider at first the stationary case to under-
P P stand the form of the Fokker-Planck equation and solution,

from_ equilibrium sy;tems, yvhere the Einstein relat|on IS nc.)RNhen the friction and diffusion coefficients are the functions
applicable. For active particles, the suggested con&deraﬂo& grain’s velocity. On this basis, in particular, the well

can be easily applied by construction of the probability tran-knOWn problem related to the Itfl] and Stratonovict2]

sition on basis of the physical arguments. forms of Langevin and Fokker-Planck equati¢8gf| can be
solved and applicability of the Einstein relation for the vari-

5i-—m B.(P), 5
J P2

Il. PROBABILITY TRANSITION AND VELOCITY- ous kinds of functions of probability transitions can be in-
DEPENDABLE FRICTION AND DIFFUSION vestigated. The results can be used also for unstationary case,
COEFFICIENTS if the initial distribution function is isotropig¢which is not

always valid, naturally Then, taking into account isotropy
of the distribution functiorf 4(P,t), the Fokker-Planck equa-
tion is given by

The appropriate kinetic equation describing motion of
Brownian particles in some medium with the momentum ex
change may be written as

df,(P,t dfg(V)—i[ﬁ*(V)V-f (V)+\ﬁi[D (W)f (V)]}
gé—t'):Ig(P,t)zf dafw(P+q,q)fo(P+a,1) dt oV, VPV '(6)
—w(P,q)f4(P.t)}, @ orin the equivalent form

where f4(P) is the distribution function of Brownian par- dfg(V)

190
ticles (graing of the masdM. The elementary process is the T:(s+ Vw) B*(V)fg(V)+ [D(V)fg(V)]}-

V oV
change of momentum of the gramto (P—q). The prob- @)
ability transitionw(P,q) in Eq. (1) describes the probability
for grain with linear momentun® to lose the momenturg. Here s is the dimension of the velocity space and the

Equation(1) has a form of master equation. In general, thegcgjar functions o¥/ are the same as onesRfbut expressed
probability transition is the function of time itself. To sim- iz the equalityP=MV. We use above the velocity variable
plify Eq. (1) for the processes with the momentum transferior grainsV instead of momenturR and the diffusion tensor
q<P, we have expanded the right side of E#) by . The Dij(V)=M"2B;;(V). We also use these notations below.
resglt of the expansion is the Fokker-Planck equation fofpe functionss* (V) andD;(V) are determined via the tran-
grains: sition probability as

LlPD L APy (P o [By(PI(P)]|. @ . 1
at ap; | NPT ap, o (PP ,8(V):B(V)+7[D|\(V)_DL(V)]a ()

The coefficientsA;(P) andB;;(P), as easy to see by ex-

pansion of Eq(1), are expressed explicitly through the prob- B(V)= if dsq(P-q)w(P,q), 9)
ability transitionw(P,q) by the relationde.g., Refs[3,14]) p2
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1 structure of this renormalization, due to tensorial character of
Di(V)=— 2f dsq(P-q)°w(P,q), (10)  the diffusionDj;(V) as follows from Eq.(8), permits to re-
2M“P formulate the problem: what must be the structure of Lange-
vin equation fors-dimensional case to be relevant to the
1 single-valued Fokker-Planck equation, based on the specific
D.(V)= 2(s— 1)M2P2J d *o[P?g?~ (P-)*]w(P,q), probability transition. Because we use, as the basis, transition

(11) probability we can establish the validity or violation of the
Einstein relation between the friction and diffusion coeffi-
where P-q) is the scalar product in the velocity space with cients directly, without usual suggestion of Maxwellian form
dimensions. Equation(8) can be rewritten in the form of the static distribution function for Brownian particles,
which is valid for the equilibrium statéwhen the Einstein
. 1 T relation is fulfilled a priori). In particular, the existence of
B*(V)=B(V)+ ﬁf daw(P,q)[s(P-q)“/P*—qg~]. the Einstein(or some different from onerelation between
(12) the momentum-dependable coefficients can be investigated.
Correspondence between the Fokker-Planck and Langevin
We see that the three scalar function®Ppfletermined by equations fos-dimensional case on the basis of PT approach
the different moments of probability transition, permit to find will be considered in detail in a separate publication. Below
the coefficients in the Fokker-Planck equation. we find the probability transition and investigate the various
For the anisotropic velocity distribution function or for cases for the PT and Fokker-Planck equations.
presence of the external fields, which do not change the fric-
tion and diffusion(which is not always valid, naturallyEq. [1l. BOLTZMANN-TYPE COLLISIONS

2) can be rewritten as . S
@ Let us consider the Boltzmann collision integral for two

df (V) 4 VV. 9 species of particle-light componeritalled below atoms
g = ViB* (V) fg(V)+—2 7[RIV (V)] with the massn and grains with the mas$d (m<M), which

t Vi vz 0V interact one with anothefgeneralizations can be easily
done. To find for such a process the PT functieg(P,q) it

i ___ViVj i[D (V)fo(V)] (13) is enough, for example, to transform the part of the Boltz-

V2 | dV; mann collision integral, describing the loss of grains in the

S _ _ . phase volumelP near the poinP, to the variable$ andq,
For simplicity, external fields are not included in Ed3).  whereq is the momentum transferred during the elementary
The useful equivalent representation of Etf3) has a form  act of collision between atom and grain. Then, comparing the

result of transformation with Eq1), for three-dimensional

df,(V d 10Dy(V i
g(t ):W Vi(ﬁ*(V)+v (;l\(/ ))fg V) (3D) case we find
i m q2 do q2
w2 oy Sl
ViV 9fg(V) (P=" ] 9 T(qm] do | 2ul(g-m] X
+D”(V)7‘9—Vj m m qzn
Xf|—P——| =——q]|. 16
ViV | af (V) M M(ZI(q-n)l q” (19
DLV 4 V2 IV; (14 Heredo=sin ydydd¢ is the element of the space angle for

scattering with the differential cross sectidr, f,, is the
The stationary solution of the Fokker-Planck equationdistribution function of atoms,q=(p’'—p)=(P—-P’),

with the kinetic coefficients from Eq48) and (10) for the  qcosy=(q-n), vectorn is the unit vector along the velocity

grain distribution functiorf 4(V) is v, of atom after collision in the system of center of mass for
c v " colliding particles angu is the reduced mass. The values of

fo(V)= ——ex _f dv B (v) , (15) the limiting angles fory above and bt_alovv_ are usualfymin
Dy(V) o Dyv =0 andyma= 7, except some special situations when the

integral overy diverges, as for example, for the purely Cou-
whereC is a constant, providing normalization. As it is easy |omp interaction when the known cutting with<Oyi,
to see from Eq(6) for isotropic case, the stationafgs well <, <7 is necessary. Taking into account the relation
as nonstationajyFokker-Planck equation with the velocity- 42/[2|(q-n)|]=|(v—V)|, Eq. (16) can be rewritten in the
dependent coefficients has a well defined form and the quessrm more useful for applications:
tion of “renormalized” friction coefficient is solved com-
pletely by Eq.(8). The uncertainty in choice of the Fokker-
Planck equation in the forms suggested, e.g., in R&f&,4], Ws(V'Q):f dﬂf dvalq+uv—pulvin]
was created by attempts to connect the Langevin and the q
respective Fokker-Planck equations by one-to-one corre- o
spondence, starting from the Langevin equation. The real ><fn(v+V)|v|%(|v|,X). (7
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We can use representatig¢h?7) to obtain the useful general the simplest approximation for the distribution function

expressions for the friction and diffusion coefficients: fo(v+V)=n,8(v+V) and from Egs(11) and(17)—(19) ob-
tain
B(V)= M’t/zf dﬂf dv[V- (|v[n—V)] B(V)=(2m/3M)maZn,V, (24)
do Dy(V)=(m/M?)ma’n,V3. (25)
X fa(v+ V)|V == (|V],x), 18 - . )
nl )V dO(| [0 (18 For D, by similar calculations we find
" D, (v)= 21V (26)
Dy(V)= 2J dﬂj dv[V-(|v|n—v)]? LWV)==
MV
do Therefore, in that limit instead of the Einstein relation we
X fo(v+ V)|V d_(|v|’X)' (19 find another relation between velocity dependa®(®) and
0 D”(V)Z
The similar expression can be written fbr, . When the 2
distribution function of atomg, has the Maxwellian form D(V)= 3—MmV2,8(V). (27)
with the temperaturd, the functionw(V,q) can be simpli-
fied, taking into account the inequality<P. This situation can be classified as far from equilibrium. For

If [V|<v+, where for the thermal velocity of neutral par- considering the case of uncharged spherical grains, the sim-

ticles (atomg we use the notationy, the distribution func-  plest interpolation relation between the friction and diffusion
tion in PT can be expanded and we arrive, with respectivgoefficients can be suggested:

accuracy of the order gi/M=m/M, at the expression for
wy(V,0): 2

2mV- )
1+ =7 B(V). (28)

T

312
m m
WS(V'q):_?nn(ZWT) fdﬂf dvélqtpv The similar interpolations as well as the exact velocity-

dependent relations for the arbitrary cross sections can be
|v|(v~V)d—U(|v| X). found from Eqs.(18) and(19). As it follows from the rela-
do*' " tions considered abov@g* (V)= B(V) for all the cases with
(20) accuracym/M. In general, by using expansions to higher
order of the small relatiog/P, the expressions for the func-

If atoms with the density, are considered as the point par- ions 8*(V), D(V), andD (V) can be calculated and the
ticles and grains have the radiasit is easy to find from Eqs. Possibility to neglect the difference betwegst (V) and

my?
ulvinlex >T

(18)—(20) the values of the coefficiens and Dy : B(ﬁ().can be established for the considered Boltzmann-type
collisions.
e The essential influence of velocity dependence on the val-
B(V)= ST(m/M yanur, (21 ues of the friction and diffusion coefficients and the violation

of the Einstein relation for the Boltzmann-type collisions
N take place only for the extreme velocities much higher than
_gVem 2\ 42 the thermal velocity of the light particles. For the case of low
Dy(v)=8 3 (MM%)an,Tor. @2 grain velocity on basis of general representati¢h® and
(19) for the friction and diffusion coefficients, the applicabil-
We see that the Einstein relation is fulfilled: ity of the Einstein relation for arbitrary cross section of scat-
tering can be shown.
D(V)=M"1TB(V). (23
Calculations of3 and D were done independently on the V- ABSORPTION COLLISIONS
basis of the appropriate PT function. Now turn to other type of collisions, namely, to the ab-
Let us now consider under general conditiore P the  sorption collisions, which are typical, for example, in dusty
opposite casgV|>wv to solve the problem of the validity of plasmas and some other open systems. As it is well known
the Einstein relation for the velocity-dependable coefficientdhe process of grain charging by absorption of the electrons
of the Fokker-Planck equation for arbitrary values of grainand ions by grains leads to the stationdbyit nonequilib-
velocities[4]. In fact, the answer can be found already forrium) state in plasma discharges. In so-called OMtbital
the particular case of atoms, scattering by grains, consideradotion limited approximation, the electrons and ions ap-
as the hard spheres. Even in this simple case, as it will bproaching the grain at a distance less than the grain radius
shown, the Einstein relation is violated for high grain veloc-are assumed to be absorbed. It is clear that the absorption
ity. In the limit of extremely high grain velocity we can use collisions cannot be described by the Boltzmann-type colli-
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sion integral. The appropriate correct form of the absorptionwith the grain. Therefore the probability transition(P,q)
collision integral has been postulated and applied in RefSor the considered case can be immediately found by com-
[14,19. The rigorous kinetic theory of the electron and ion parison of Eqs(1) and(29),
absorption in dusty plasmas, which exists in parallel with the

usual processes of electron and ion scattering by grains, has

been developed in Ref$§11,17, where also the Fokker- Wc(P'q):fn(_q)Uc(
Planck equation for the charged grains was justified. Below

we use the simplest form of the Fokker-Planck equation for |If we choose the Maxwellian distribution for atoms and
grains with a fixed chargédistribution by charge assumed assume, to consider the simplest case, that absorption is
narrow, which is often in realii)y Our aim here is to find the purely geometricalgcz Ta? [the particular case of E(q3]_)
probability transition function for absorption and to demon-for Q=0], we easily obtain with accuracy-m/M that
strate efficacy of such an approach. More complicated cases* (V)= (V). A simple calculation leads to the relation be-
can be considered similarly. We also ignore increase of thgyeeng(V) and Dy(V):

grain mas$16,17), assuming that neutral atoms generated in

the course of the surface electron-ion recombination escape Dy(V)=2M “ITB(V). (33

from the grain surface into a plasma. Naturally this process

also changes the momentum balance for the particles, but we This relation is different from the Einstein one already for
will not consider this process in our present model. Then théow V and for V=0 coincides with the result obtained in

Lq)[P,a
m

Mmim™

M

:

‘ . (32

kinetic equation for grains can be written as Refs.[12,17 as the limiting case @=0) of the Fokker-
Planck equation for dusty plasmas in the case of the domi-

dfg(P,Q,t) nant absorption collisions. Here we found this relation on

Tzlg(P’Q’t) basis of the theory with velocity-dependent coefficients,

based on the probability transition approach developed

_ Z B _ above. For a more general form of the probability transition,

=2 dpf (P W, (p,P—p,Q) f4(P—p,Q) which contains the free functiong(P),x(q) and a small

parameterr<1, w(P,q) = #(P) #(|q+ P|)x(q), it is pos-
—W,(p,P,Q)f4(P,Q)}, (290  sible to show that as abovéwith accuracy to~m/M)

_ o _ B*(V)=p(V) and the relation betweeg(V) and D|(V)
where f (p) is the distribution function for the electrons also has a form independent ®f and different from the
(=€) and ions @¢=i) andQ=eZ,. The elementary pro- Einstein one:
cess is the absorption of electron or ion with the mags

The probability of absorption is given b d
p y p g y v 2g|v|2f dqqx(q)( i(q))
B q
W,(p.P.Q) =0 |- 0] [o -2 (30 Dy(V) 39
PPQ= el |§7 =1 1R~ | ! | daav@oia

whereo(v,Q) with v=(|P/M—p/m|) is the cross sections
for absorption(or collection of the light plasma particles by
grain in OML theory:

This consideration shows that the structure of the Fokker-
Planck equation for the processes, based on the Boltzmann-
type collision integrals, is very different from the processes
of other type when the Boltzmann-type collisions are not

2e,Q 2e,Q . i i i
a2 Sre _ f=a relevant. For the first type of processes the Einstein relation
o w)=ma|l—- ———|0|1—- ——-|. 31 ! ° - o
«(Qu) m,v-a m,v-a 39 is valid, even for the case of velocity-dependent friction and

diffusion coefficients, but in the limit of low grain velocity

Below on the basis of Eq$29)—(31), two different but  |v|<y;. For non-Boltzmann type momentum transferring,
related problems are solved. At first, to consider the problenthe fluctuation-dissipation theorem does not exist even for
of absorption in simplest form, we accept the next simplifi-\y=0, though some relation between the friction and diffu-
cation in spirit of Refs[16,17, namely, we will consider sjon coefficients can exigspecific for the each type of BT
absorption of neutral atoms of one sort. It means we@ut These results have deep consequences for many physical sys-
=0 and instead of summation hyretain only notation with  tems, as well as for the systems of biological nature, e.g.,
the indexn (for the neutral atomsin Egs.(29—(31). Gen-  cells moving in solutions and other, so-called, active walkers.
eralization of this simplest model to the case of charge ab-
sorption with a fixed charge is quite simple. V. FRICTION AND DRAG FORCE IN DUSTY PLASMAS

The second problem in focus of our interest connected
with a real dusty plasma, when there is ion stream and so- In this section as an application of the developed theory,
called drag force, applied to the grains and created by ionve consider the problem of momentum transfer from the ion
absorption and ion scattering exists. stream to grains in dusty plasmas. Due to ion absorption and

Let us start with a system of neutral particles absorbed bygcattering by grains the drag force, acting on grains, appears.
grains. The momentum transferred to the grain due to abthis force plays a crucial role in many experimental obser-
sorption is equal to the momentum of the atpneolliding  vations and, probably, is important for formation of voids in
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dusty plasmas for both “earthlyf18—20 and microgravity -

[21] conditions; the theory of voids essentially based on the Fis= _f dPPB(|P)f4(P,1), P>y, (41)
drag force was given in Reff22,23. The ion drag force®,

consists of two parts, so-called collectidy. and scattering Fre=ngyB(lyD,  P<y. (42)

D, ones. In the paper of Barnes al. [24], the approximate
analytical expressions for the drag collection and scatterinor the momentum distribution function of graifig= 5(P
forces were done. Later on the theory of drag force was-p,) (if the force is calculated for one parti¢l€q. (38)
actively developed analytically and numericalB3-28 to  takes the form

improve the description of drag force. It was achieved for the

scattering parD,s, in particular, in the recent publications Fis=—(Po—Y)B(|Po—Yl), (43
[27Hi?|é we are focusing on generalized description of fric-and describes both the friction force itself and the drag force.
tion and relation between the friction and drag forces. Let udh 9eneral, according to Eqe38) and (43), there is compe-
calculate the generalized expression for the friction fdfce tition beMeen frlcthn and acceleratlon.. For_the limiting case
on the basis of the Fokker-Planck equation for the charge@f the friction force itselfFyos for the grain with momentum
grains[Egs.(3) and(29)]. We calculate her&; only for ions G anq |mmc_)blle ions and the opp03|te case, ion drag itself
because we are interested in the ion part of friction. GenerPis With the ion velocityu= G/M, there is a natural relation:
alization for many species of the light componeiétec- S -

trons, atompis simple. By integration of Eq2) on momen- Fros=Fis(G)= ~F1s(G)=Dis(G). (44)
tum we find the following for the time evolution of the

This picture can be easily generalized for a few species of
average momenturiy :

the light particles. From Eq$17) and (43) we find for Fi,
the representation

&(nngi) ~
Qo =~ dPA(P,y)f4(P,t). (35
J m(V—u)
) o v vV L) VI (),
. . . . 2
The functionA;(P,y) is a generalization oA;(P) of Eq. (V—-u)
(5) for the case of existence of some additional vector in the (45)
probability transition. In the case under consideration this g
vectory is the momentum, determined by the velocity of the _ J"max Q_‘T 1— 4
ion streamy=Mu: (V) Xenin g (1~ cosy). (46
= _ ~ Here we use the limits for the angles of integration, taking
Ai(P’y)_f dagiw(P.y,q). (36 account of providing convergence for the Coulomb cross

~ section in the case of ion-grain scattering. Equati) co-

To find w(P,y,q), when there is ion flow in plasma, it is incides in the limit cas&/=0 with the well known general
quite natural to use the shifted Maxwellian distribution func-formulas for the transferring of momentum from light to
tion of ions. heavy particle in the process of scattering, which can be

At first we consider the scattering pdfts of F;. The justified from the simple physical arguments, as it was done,
probability transitionw(P,y,q) in this case has the evident €.9., in Ref.[29]. For the opposite limit case=0 it de-
property scribes the friction forc&;qg for grain. This equation is also

applicable, naturally, for the short-range scattering potentials,
Ws(P,y,q)=Wy(P—y,q). (37  when x,in=0 and xnax= 7. The specific result foD,g in
_ _ o the casgu|<Vy, can be written for the Coulomb cross sec-
Then we obtain the general expression for the friction force[iOn in the form

Fis:
Dis=2AMul?n A, (47)
Fie=— | dP(P— P—y|)f4(P,t), 38
fs j (P=y)A(P=yDf(P.D 38 where Ag=(\27/3)(m; /M)a?no . andvr =T, /m;. The
parameteﬂ“EeZZgZi /aT; and usuallyl’>1 for dusty plas-
dala- (P— P—v.q), (39 mas. The structure 'of the generalized Landau logarithm In
f ala-(P=y)Jwy(P=y.a), (39 for dusty plasmas is very important and has been recently
considered in Refd27,28. For very strong interaction, the
~ problem of the correct form of In as function of plasma
A(P—Y):(P_Y)B(|P_Y|):f dgaws(P—y.q). parameters is still not completely solved.
(40) Let us consider now the generalized collecting frictigp
o _ o _ and in particular the collecting drag for@.. The formula
In the limit cases of the scattering friction itséts=F;;  of structure similar to Eq(45) but with V=0 and with the
and scattering ion drag itsel,=F;,, Eqg. (38) can be re- collecting nontransport cross section, instead of transport
written as scattering cross section, was applied also for the collecting

1
—y)?

B(P—y)=(P
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drag force in Refs[23,27,2§ and other papers on phenom- For the momentum distribution function of graifig= 6(P
enological basis. Our goal here is to investigate the collect—P,) (if the force is, as above, calculated for one parjicle
ing drag force by use the PT E?2) for absorption and to the friction F;. takes the form

find the relation between the friction force and the friction
coefficient for the collecting process. Recently in Réf3]
the friction coefficient3(V) in dusty plasmas was calculated
explicitly for arbitrary grain velocity and parameter It was . ) . ) )
found that8(V) can change sigtfnegative friction”) from This equality can be written in the equivalent form
positive to negative for some velocity domain if the param- B

eterI'>1. Here we reproduce the result of REF3] for the Fre=muB1(|Po—y|) = (Po—mu) B2(|Po—y]), (52
total friction coefficient for a grairB(V) [for the particular
but important casey=(m;v2/2T;)<1 and arbitran’]:

Fie=—A(Po.y) =~ | da(a-muw(Py-y.a). (51

where the coefficient®; are related with the zero and first
moments of the PT function:

12
B(n,r)ZZAO[l_F+4%(:_a'2a) —g(l—SI‘) ,81=jdqWC(P0—y,q), (53

+I2%In A

1
: 48 . — (Py— _v.q).
(49 b= o f dalq: (Po—y) We(Po—y.q).  (54)

Let us consider the simple and practically important case,
when both vector$,=Muv, andy are directed parallel or
ntiparallel to the same unit vectbr Py= 7l andy=yyl.

The terms in Eq(48) proportional to the atom density, and

to InA describe friction, respectively, with atoms and with
ions by scattering. These terms are always positive. Oth . . . .
terms in Eq.(48) describe negative friction due to ion ab- hen for the friction, we arrive at the following expression:
sorption by grains and are negative in the considered limit _ _ _

casen<1 if '>1. Negative friction exists for smaj if the Fre=HuolmBa(|7o=Yol) + MBz(lmo=yol)]

Coulomb scattering is strongly suppressed, when the Cou- —moBo(|m—Yol)}- (55)
lomb logarithm InA is small[13,27 (some additional rea-

sons for its reduction are discussed in H&B]), which is  Here and below we use velocities related with the momenta
typical in strong interaction in dusty plasmas. The level ofmo=Muv, andy,=Mu,. Equation(55) can be represented
ionization has to be high enough to provide negative value o the equivalent and explicit form:

the friction coefficient. As we know, these conditions in
present are not reached in the experimental setups. Opporty- V-1(Up—vvg)
nity for manifestation of negative friction in the experiments ' f¢™ —hmy | dv ( 2
requires as we already mentioned the special conditions.

From Egs.(35), (36), and(48), it follows straightforward by

that the collecting friction force itseF;o. for a moving grain —vo)llvloc(lv]) - mvof dv
can be written as

filv+1(ug
Ug—vo)

[V-1+Up—vol(Ug—vo)

(Up—vo)?

Froe=—PoB(7n,I). (49) Xfi[V+|(U0_UO)]|U|‘7c(|U|)’- (56)

Let us consider the special cases of Eif).

To find the generalized collecting friction for and . . .
g g & ( (@ vo>Uug,ug—0. In this case we arrive at the friction

therefore also the drag forgewe have found the function

w¢(P,y,q) for collection. The crucial fact is that the relation oree Froc !

similar to Eq.(37) or (49) for PT function is not correct for [Vo- (V=Vo)]

the absorption in the case when an ion flow exists (), Froc= —mVof dv—————fi[v=Vol[v|ac(|v]).
due to the different structure of the PT functions for the Vo

scattering and collection processes. It is the property of the (57)

eﬁ;tir]nghkineti? models for absorption in dusty plasmas, inryig eynression coincides with the collecting ion friction
which the surface recombination and atom emission is noForce, which leads to the negative collecting friction coeffi-

taken into qccount .explicity. . . cient forI'>1 [13] and to the respective relatioi48) and
To describe the ion stream with the velocity- 0 we use

again the shifted Maxwellian distribution of ions. As it is (B) Ue>v0,09— 0. In this case the generalized collecting

easy to see in this case the PT functiog(P,y,q) can be friction F;. describes the collecting ion drag forEx, :
expressed viav, determined by Eq(32):

u-v
W Die=mu | dv—-fi[v— o(lv)). 58
We(P.y,q)=W(P—y,q+mu). (50) ! m“f vz filv=ullvloe(fv]) (58)
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This equation coincides with the expression for the collectamplification of the grains takes place. Consideration for the
ing drag force, which has been suggested in R&f8,28§|. 2D and 1D cases is evident.

(c) ug#0, vo#0. Temperature of ions is loWuy—Vy)| The “weight function” A(6) for the angleé can be in-
>v1;, the ion distribution function tends to th& function  cluded to describe the axis-symmetrical nonhomogeneity of
n;8(v+u—V,). ThenF;. tends to the force directed along amplification for the different angleg. We can also include
the ion stream, which we denote B, : two additional weight functionsX (P) and Y (e —&g). The
first one describes dependence of PT from the modRlaé
the momentunP, the second one describes that momentum
transferring is possible only if the inner energy of a grain

. . Lo . .. (cell) ¢ is bigger than some fixed minimal value of the inner
As it follows from Eq.(5_9) |on_W|nd in the considered limit energyeo, let us sayY (e — o) = 9(e—e,), whered is the
always accelerates grains.uf is parallel toV, and they are steplike function.

close one to another, but both are higher thap, the en- Under these assumptions, the PT for the momentum trans-
hancement of the drag ford®y,. occurs with decrease of the ferring w,, due to loss of the inner energy of an active

relative velocity |(uo—Vo)|. It is the consequence of the particie, can be written in the case under consideration as
OML collecting cross section, which probably can be observ-

able for very fast grains, discovered in some experiments
[30,31], or in cryogenic discharges. W, (P,q)= oY (e —£0) X (P)A(0) u1(q) F(6— 7+ o)

X Hw— ). (60)

Dioc=mnu|(Ug—vo)|oc([(Ug—vo)]). (59

VI. ACTIVE PARTICLES

During the last decade, investigation of motion of the seIf-The values of the fI’ICtIOI’.l and diffusion coefficients follow
from general Eqs(8)—(11):

organized objects, e.g., cells, is in a focus of interest, due to
numerous measurements and observations of their dynamical

behavior[8,32]. Our goal in this work is to show that con- S(P) (=

struction of the relevant probability transition on basis of the Be(V)=—2mvoY (e~ e0)—5 fo dqer ()
simple physical requirements permits to justify the relevant

description of such systems. In particular, we show that for m )

the simplest structure of PT for motion of an active particle, X fre d@'sin 6 cosoA (), (61)
the known(and experimentally verifigdstructures of the ve- 0

locity distribution of grains(cells) [32], which are able to

have a directed motion near a fixed nonzero velocity, can be S(P) (=

justified. The coefficients of this distribution are calculated. D.(V)=27voY (e—&0) VE JO dad'ui(q)

Let us formulate some general conditions to find the
structure of the PT for active particles. We suppose that the -
linear momentum, transferred from a grdaell) to the sur- ><J désind coSOA(6). (62
rounding medium, is created by loss of the inner energy of 7%
this grain. Below we ignore the processes of energy supply,
which can be included separately in more complicatedro find the total expressions fg8(P) and D(p) we have

schemes. _ added to the value®l), (62) of 8.(P) andD,(P) the parts
At first we assume that the transfgrred to medium momenof the friction and diffusion coefficients aroused due to col-
tum g<P is distributed near some fixed valegg. The fre-  lisions between the cell, moving with the moment&mand

quency of generation of the transferring momentwill be  the surrounding particlesatoms of the solution. For the
denoted asu(q). It can be approximated, for example, by case of 3D elastic collisions and the hard sphere interaction,
the product of the functions, describing distributions onthese parts were calculated on the basis of Exf$.and(22).
modulus|g|=q and on the space anglése between the For the velocities of cells essentially less than the character-

vectorsq and P, if there are no other, besides and P, istic velocity of atoms we can ignore the velocity-dependent
characteristic vectors for the system. In this simplest case wenultipliers and consider the parts of the coefficieAty(V)
can put w(g)=rou1(A)u2(6,¢), where vg is the =pg,andD,(V)=D,, connected with the elastic collisions

g-independent frequency of momentum generation by a graias constants. These constants as well as the initial velocity-
(cell). Below we suggest that the dependence oj, is  dependent functiongfor V<vy,) [see Eq.(23)] are con-
absent. The distributiop1(q) can be Gaussian or, for the nected by the Einstein relatioDq(V)=M T8 (V)

limit case of very narrow distribution of the transferring mo- =M ~1Tg,,.

mentum, can be approximated by tl& function w4(q) If we make the natural assumption ti&(P) is a con-
=Nod(q—qp)/ qé, where )\ is a dimensionless constant. stant, which means that the Ril, is not dependent on the
For the functionu,( ) we assume, that the anghebetween  cell velocity (as the process, which is determined by the
the direction of the transferred momentum and the momeninner state of the grainswe find from Eq.(61) that 8,.(P)

tum of the active grain is enclosed between the valdes ~1/P. Due to this specific dependence, the Fokker-Planck
— 6o<6<, where 6, is some acute angle. Due to this, equation for cells can be written as
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dfg(V) @ atg(V) Langevin and Fokker-Planck equation has to be reformulated
a2V [VBo—K,1f4(V)+[Do+D,] N | as a problem of the relevatb the Fokker-Planck equatipn
63) Langevin equation.

For the non-Boltzmann collisions, e.g., for the absorption
whereK,>0 is a constant, determined by the equajty  collisions, the structure of PT follows from the structure of
=—K,/V and Eq.(61), andD, is determined by Eq62). the collision integral, obtained earli¢i1,14,19 and leads,
For B, Eq. (21) can be used. Finally, the result {8, in particular, to the relations different from the Einstein’s
=8\2Tmn,S/(3M m), whereS=7a? is the area of the relations between the coefficients in the relevant Fokker-
grain andn, is the density of the atoms. The stationary so-Planck equation already for the region of low grain veloci-

lution of Eqg. (63) is the Gaussian distribution: ties.
As the example of application of the PT method to the
Bo K,\?2 more complicated systems we considered the generalized
fg(V)=Cexp — ﬁ(v_ %) ] ©4  friction force in dusty plasmas. The scattering and collecting

parts of this force are determined by the generalized friction
Here C is the constant of normalization anBDy=(D,  coefficient, as a function of ion stream and grain velocities.
+D,). The remarkable fact is that the sign of the collecting friction
The velocity dependence of the distribution function coefficient can be negative for some plasma parameters, as it
f4(V) (64) coincides with the one that has been found in Refwas recently showf13]. Of course realization of negative
[32] on the basis of the phenomenological assumption, contotal friction coefficient for grains for dusty plasmas in ex-
cerning the structure of the friction coefficient in the Lange-periment requires special conditions, because other mecha-
vin equation. This type of the velocity distribution function nisms of friction exist. The ion drag force in such approach
in our consideration is the consequence of physically cleaas well as the friction force itself are the particular cases of
choice of the perturbation transition function. It can be gen-this generalized friction. The ion scattering and collecting
eralized for more complicated and practically importantdrag forces are found and calculated for the various particu-
cases, when there are one or m¢additional toP) vectors, lar cases. Some phenomenological expressions, which have
which determine the direction af. It can be some inner been used for calculations before, are rigorously proved and
vector, “driver,” which can be orientated on the external generalized. To compare theoretical results with the experi-
(e.g., surfacegradients of density, or temperature, or con-ments in dusty plasmas, a more detailed description of
centration of some ingredient in the ambient medium. In thaforces, which takes into account, in particular, the process of
case, naturally, the equilibrium state is not effectively onesurface recombination and mass transfer by atom evapora-
dimensional. Active particlée.g., cel) can turn during mo- tion has to considered. Such type kinetic theory is in the

tion. These problems will be considered separately. stage of development and will be published separately.
We also constructed the PT for the active partices.,
VIl. CONCLUSIONS grains or cellsin an ambient medium for some simple situ-

) _ ~ation. On basis of physically clear assumptions we found that
Here we use the simple and effective way for concretizathe part of the generalized friction coefficient, responsible for
tion of the Fokker-Planck equation on basis of self-consisten§e|f-motion, can possess the peculiarit LivhereP is the
determination of the friction and diffusion coefficients. Both momentum of a grain_ Given also the appropriate usual fric-
This function possesses a very different structure for thgokker-Planck equation is Gaussian with a peak around
Boltzmann-type collisions and the other ones. We found PTsome nonzero velocity. Some generalizations of the obtained

for the Boltzmann-type CO||iSi0nS and prOVed that VeIOCity' resu'ts for more Compncated cases are Suggested_
dependent friction and diffusion coefficients are connected

by the Einstein relation for the velocities of grain less than
thermal velocity of the small particles. At the same time,
there is a crucial violation of the Einstein relation for the
higher grain velocity. Therefore, in general, for the velocity- The author is grateful to Sergei Filimonov for his kind
dependable friction and diffusion coefficients even for theand permanent support which made it possible to write this
Boltzmann-type collisions the applicability of the Einstein paper. The author also thanks E.A. Allahyarov, W. Ebeling,
relation is limited by not very higtinevertheless practically U. Erdmann, M.V. Fedorov, V.E. Fortov, A.M. Ignatov, L.
most important values of the grain velocity. The velocity Schimansky-Geier, P.P.J.M. Schram, .M. Sokolov, and A.G.
dependence of these coefficients and renormalization of théagorodny for valuable discussions of the various problems
friction coefficient in 2D and 3D cases as a consequence akflected in this work. The author is grateful to G. Morfill for
the tensorial structure of diffusion are found. Because thehe invitation to the Max Planck Institute for Extraterrestrial
Fokker-Planck equation is single valued also for the velocityPhysics in Garching and to him and S.A. Khrapak for useful
dependent coefficients, the problem of connection betweediscussions of drag force in dusty plasmas.
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