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Fokker-Planck equation for Boltzmann-type and active particles: Transfer probability approach
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Joint Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Street, Moscow 127412, Russia
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A Fokker-Planck equation with velocity-dependent coefficients is considered for various isotropic systems
on the basis of probability transition~PT! approach. This method provides a self-consistent and universal
description of friction and diffusion for Brownian particles. Renormalization of the friction coefficient is shown
to occur for two-dimensional and three-dimensional cases, due to the tensorial character of diffusion. The
specific forms of PT are calculated for Boltzmann-type and absorption-type collisions~the latter are typical in
dusty plasmas and some other systems!. The validity of the Einstein’s relation for Boltzmann-type collisions is
analyzed for the velocity-dependent friction and diffusion coefficients. For Boltzmann-type collisions in the
region of very high grain velocity as well as it is always for non-Boltzmann collisions, such as, absorption
collisions, the Einstein relation is violated, although some other relations~determined by the structure of PT!
can exist. The generalized friction force is investigated in dusty plasmas in the framework of the PT approach.
The relation among this force, the negative collecting friction force, and scattering and collecting drag forces
is established. The concept of probability transition is used to describe motion of active particles in an ambient
medium. On basis of the physical arguments, the PT for a simple model of the active particle is constructed and
the coefficients of the relevant Fokker-Planck equation are found. The stationary solution of this equation is
typical for the simplest self-organized molecular machines.
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I. INTRODUCTION

Brownian dynamics nowadays is in the focus of inter
due to the wide new fields of applications: physical-chemi
systems, so-called active walkers, e.g., cells and other
jects in biological systems, dusty plasmas with natural a
artificial grains and many other systems. The character
property of such systems is velocity-dependent friction a
diffusion coefficients. The existence of the Einstein relat
and even the correct specific forms of the Fokker-Pla
equation for such systems are not still completely clarifi
In particular, attempts to use the Langevin equation as a
chastic basis for derivation of the Fokker-Planck equat
lead to non-sign-valued result. The different forms of t
Fokker-Planck equation, such as so-called Ito and Straton
ich @1–4# ones, appear. For the systems close to equilibriu
Brownian particles keep stationary random motion under
tion of the stochastic forces, which are compensated by
particle friction and thus, the work produced by the Lange
sources is equal to the energy dissipated in course of
Brownian particle motion. This energy balance is describ
by the fluctuation-dissipation theorem in the form of the E
stein law. Obviously, the fluctuation-dissipation theorem a
the Einstein relation can be violated in the case of none
librium systems~even in the stationary case!, in particular, in
the open systems. Starting from the classical Lord Rayle
work @5# many studies of the nonequilibrium motion o
Brownian particles with an additional~inner or external! en-
ergy supply have been performed. In particular, such stu
are of great importance in physical-chemical@6,7# and bio-
logical @8# systems, in which nonequilibrium Brownian pa
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ticle motion is referred to as the motion of active Browni
particles. The dynamical and energetic aspects of motion
the active Brownian particles have been described rece
on the basis of the Langevin equation and the appropr
Fokker-Planck equation@9,10#. Possibility of negative fric-
tion ~negative values of the friction coefficient! for Brownian
particles was regarded as a result of energy pumping.
some phenomenological dependence of the friction coe
cient as a function of the grain’s velocity, a one-particle s
tionary non-Maxwellian distribution function was found.

The traditional formulations of the nonequilibrium
Brownian motion are based on some phenomenological
pressions for the friction and diffusion coefficients. In pa
ticular, it means that deviations from the Einstein relation
well as the velocity dependence of these coefficients are
tulated and a high level of uncertainty for application of su
models to the real systems takes place. Recently we con
ered another situation, when the kinetic coefficients can
calculated explicitly on the basis of microscopically deriv
Fokker-Planck equation for dusty plasmas@11,12#. It was
recently shown@13# that in the case of strong Coulomb in
teraction of highly charged grains in dusty plasmas, due
ion absorption by grains, the friction coefficient can beco
negative. The necessary criterion for negative friction due
ion absorption is found asG[e2ZgZi /aTi.1 ~hereZg , Zi
are the charge numbers for the grains and ions, respecti
a is the grain radius,Ti is the ion temperature!. The appro-
priate threshold value of the grain charge was determin
The stationary solution of the Fokker-Planck equation w
the velocity-dependable kinetic coefficients was obtain
and the considerable deviation of such solution from
Maxwellian distribution was demonstrated. The physical r
son for manifestation of negative friction in that case is cle
the cross section for ion absorption by grain increases, w
the relative velocity between the ion and grain decreases,

e,
©2003 The American Physical Society03-1
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to the charge-dependent part of the cross section. There
for a moving highly charged grain (G@1), the momentum
transfer from ions to the grain in the direction of grain v
locity can be higher than in the opposite direction.

In this paper we develop more general approach, base
probability transition, to simplify the Fokker-Planck equatio
and to calculate the velocity-dependent friction and diffus
coefficients for the different systems. On that way we fi
various forms of probability transition~PT! for Boltzmann-
type and for absorption collision integrals. The crucial pe
liarity of the exact expressions for the mentioned coefficie
follows from the exact representation of these coefficie
through the function of probability transition: it is impossib
to define the coefficients independently not only for the p
cesses, which describe the systems close to thermodyn
equilibrium when the Einstein relation isa priori valid, but
also for the systems in which there is a stationary bu
nonequilibrium state, or for the systems far from equil
rium; any rigorous approximate model of the Fokker-Plan
equation has to be based on self-consistent expression
the friction and diffusion coefficients, based on the PT.

As an example we consider a wide class of open or
from equilibrium systems, where the Einstein relation is n
applicable. For active particles, the suggested considera
can be easily applied by construction of the probability tra
sition on basis of the physical arguments.

II. PROBABILITY TRANSITION AND VELOCITY-
DEPENDABLE FRICTION AND DIFFUSION

COEFFICIENTS

The appropriate kinetic equation describing motion
Brownian particles in some medium with the momentum
change may be written as

d fg~P,t !

dt
5I g~P,t !5E dq$w~P1q,q! f g~P1q,t !

2w~P,q! f g~P,t !%, ~1!

where f g(P) is the distribution function of Brownian par
ticles ~grains! of the massM. The elementary process is th
change of momentum of the grainP to (P2q). The prob-
ability transitionw(P,q) in Eq. ~1! describes the probability
for grain with linear momentumP to lose the momentumq.
Equation~1! has a form of master equation. In general, t
probability transition is the function of time itself. To sim
plify Eq. ~1! for the processes with the momentum trans
q!P, we have expanded the right side of Eq.~1! by q. The
result of the expansion is the Fokker-Planck equation
grains:

d fg~P,t !

dt
5

]

]Pi
FAi~P! f g~P!1

]

]Pj
@Bi j ~P! f g~P!#G . ~2!

The coefficientsAi(P) andBi j (P), as easy to see by ex
pansion of Eq.~1!, are expressed explicitly through the pro
ability transitionw(P,q) by the relations~e.g., Refs.@3,14#!
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Ai~P!5E dqqiw~P,q!, ~3!

Bi j ~P!5
1

2E dqqiqjw~P,q!. ~4!

Let us assume that probability transitionw(P,q) is a func-
tion of only two vectorsP andq. It means, for example, tha
there is no, let us say, drift velocity of the media surround
the grain, as well as some inner vector inside the gra
which can influence the probability transition. For that ca
the general structure of the coefficientsAi andBi j is evident:

Ai~P!5Pib~P!,

Bi j ~P!5
Pi Pj

P2
Bi~P!1S d i j 2

Pi Pj

P2 D B'~P!, ~5!

whereb(P), Bi(P), andB'(P) are the functions of modu
lus P. Let us consider at first the stationary case to und
stand the form of the Fokker-Planck equation and soluti
when the friction and diffusion coefficients are the functio
of grain’s velocity. On this basis, in particular, the we
known problem related to the Ito@1# and Stratonovich@2#
forms of Langevin and Fokker-Planck equations@3,4# can be
solved and applicability of the Einstein relation for the va
ous kinds of functions of probability transitions can be i
vestigated. The results can be used also for unstationary c
if the initial distribution function is isotropic~which is not
always valid, naturally!. Then, taking into account isotrop
of the distribution functionf g(P,t), the Fokker-Planck equa
tion is given by

d fg~V!

dt
5

]

]Vi
Fb* ~V!Vi f g~V!1

Vi

V

]

]V
@D i~V! f g~V!#G ,

~6!

or in the equivalent form

d fg~V!

dt
5S s1V

]

]VD Fb* ~V! f g~V!1
1

V

]

]V
@D i~V! f g~V!#G .

~7!

Here s is the dimension of the velocity space and t
scalar functions ofV are the same as ones ofP, but expressed
via the equalityP5MV. We use above the velocity variabl
for grainsV instead of momentumP and the diffusion tensor
Di j (V)5M 22Bi j (V). We also use these notations belo
The functionsb* (V) andD i(V) are determined via the tran
sition probability as

b* ~V!5b~V!1
s21

V2
@D i~V!2D'~V!#, ~8!

b~V!5
1

P2E d sq~P•q!w~P,q!, ~9!
3-2
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D i~V!5
1

2M2P2E d sq~P•q!2w~P,q!, ~10!

D'~V!5
1

2~s21!M2P2E d sq@P2q22~P•q!2#w~P,q!,

~11!

where (P•q) is the scalar product in the velocity space w
dimensions. Equation~8! can be rewritten in the form

b* ~V!5b~V!1
1

2P2E dqw~P,q!@s~P•q!2/P22q2#.

~12!

We see that the three scalar functions ofP, determined by
the different moments of probability transition, permit to fin
the coefficients in the Fokker-Planck equation.

For the anisotropic velocity distribution function or fo
presence of the external fields, which do not change the
tion and diffusion~which is not always valid, naturally!, Eq.
~2! can be rewritten as

d fg~V…

dt
5

]

]Vi
FVib* ~V! f g~V!1

ViVj

V2

]

]Vj
@D i~V! f g~V!#

1S d i j 2
ViVj

V2 D ]

]Vj
@D'~V! f g~V!#G . ~13!

For simplicity, external fields are not included in Eq.~13!.
The useful equivalent representation of Eq.~13! has a form

d fg~V…

dt
5

]

]Vi
FVi S b* ~V!1

1

V

]D i~V!

]V D f g~V!

1D i~V!
ViVj

V2

] f g~V!

]Vj

1D'~V!S d i j 2
ViVj

V2 D ] f g~V!

]Vj
G . ~14!

The stationary solution of the Fokker-Planck equat
with the kinetic coefficients from Eqs.~8! and ~10! for the
grain distribution functionf g(V) is

f g~V!5
C

D i~V!
expF2E

0

V

dyy
b* ~y!

D i~y! G , ~15!

whereC is a constant, providing normalization. As it is ea
to see from Eq.~6! for isotropic case, the stationary~as well
as nonstationary! Fokker-Planck equation with the velocity
dependent coefficients has a well defined form and the q
tion of ‘‘renormalized’’ friction coefficient is solved com
pletely by Eq.~8!. The uncertainty in choice of the Fokke
Planck equation in the forms suggested, e.g., in Refs.@1,2,4#,
was created by attempts to connect the Langevin and
respective Fokker-Planck equations by one-to-one co
spondence, starting from the Langevin equation. The
04640
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structure of this renormalization, due to tensorial characte
the diffusionDi j (V) as follows from Eq.~8!, permits to re-
formulate the problem: what must be the structure of Lan
vin equation fors-dimensional case to be relevant to th
single-valued Fokker-Planck equation, based on the spe
probability transition. Because we use, as the basis, trans
probability we can establish the validity or violation of th
Einstein relation between the friction and diffusion coef
cients directly, without usual suggestion of Maxwellian for
of the static distribution function for Brownian particle
which is valid for the equilibrium state~when the Einstein
relation is fulfilled a priori!. In particular, the existence o
the Einstein~or some different from one! relation between
the momentum-dependable coefficients can be investiga
Correspondence between the Fokker-Planck and Lang
equations fors-dimensional case on the basis of PT approa
will be considered in detail in a separate publication. Bel
we find the probability transition and investigate the vario
cases for the PT and Fokker-Planck equations.

III. BOLTZMANN-TYPE COLLISIONS

Let us consider the Boltzmann collision integral for tw
species of particle-light component~called below atoms!
with the massm and grains with the massM (m!M ), which
interact one with another~generalizations can be easi
done!. To find for such a process the PT functionws(P,q) it
is enough, for example, to transform the part of the Bol
mann collision integral, describing the loss of grains in t
phase volumedP near the pointP, to the variablesP andq,
whereq is the momentum transferred during the element
act of collision between atom and grain. Then, comparing
result of transformation with Eq.~1!, for three-dimensional
~3D! case we find

ws~P,q!5
m

mE do
q2

2mu~q•n!u
ds

do S q2

2mu~q•n!u
,x D

3 f nF m

M
P2

m

m S q2n

2u~q•n!u
2qD G . ~16!

Heredo5sinxdxdf is the element of the space angle f
scattering with the differential cross sectionds, f n is the
distribution function of atoms, q5(p82p)5(P2P8),
q cosx5(q•n), vectorn is the unit vector along the velocity
v08 of atom after collision in the system of center of mass
colliding particles andm is the reduced mass. The values
the limiting angles forx above and below are usuallyxmin
50 andxmax5p, except some special situations when t
integral overx diverges, as for example, for the purely Co
lomb interaction when the known cutting with 0,xmin
<xmax,p is necessary. Taking into account the relati
q2/@2u(q•n)u#5u(v2V)u, Eq. ~16! can be rewritten in the
form more useful for applications:

ws~V,q!5E dVE dvd@q1mv2muvun#

3 f n~v1V!uvu
ds

do
~ uvu,x!. ~17!
3-3
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We can use representation~17! to obtain the useful genera
expressions for the friction and diffusion coefficients:

b~V!5
m

MV2E dVE dv@V•~ uvun2v!#

3 f n~v1V!uvu
ds

do
~ uvu,x!, ~18!

D i~V!5
m

MV2E dVE dv@V•~ uvun2v!#2

3 f n~v1V!uvu
ds

do
~ uvu,x!. ~19!

The similar expression can be written forD' . When the
distribution function of atomsf n has the Maxwellian form
with the temperatureT, the functionw(V,q) can be simpli-
fied, taking into account the inequalityq!P.

If uVu!vT , where for the thermal velocity of neutral pa
ticles ~atoms! we use the notationvT , the distribution func-
tion in PT can be expanded and we arrive, with respec
accuracy of the order ofm/M.m/M , at the expression fo
ws(V,q):

ws~V,q!52
m

T
nnS m

2pTD 3/2E dVE dvd@q1mv

2muvun#expS 2
mv2

2T D uvu~v•V!
ds

do
~ uvu,x!.

~20!

If atoms with the densitynn are considered as the point pa
ticles and grains have the radiusa, it is easy to find from Eqs
~18!–~20! the values of the coefficientsb andD i :

b~V!58
A2p

3
~m/M !a2nnvT , ~21!

D i~V!58
A2p

3
~m/M2!a2nnTvT . ~22!

We see that the Einstein relation is fulfilled:

D~V!5M 21Tb~V!. ~23!

Calculations ofb and D i were done independently on th
basis of the appropriate PT function.

Let us now consider under general conditionq!P the
opposite caseuVu@vT to solve the problem of the validity o
the Einstein relation for the velocity-dependable coefficie
of the Fokker-Planck equation for arbitrary values of gra
velocities @4#. In fact, the answer can be found already f
the particular case of atoms, scattering by grains, consid
as the hard spheres. Even in this simple case, as it wil
shown, the Einstein relation is violated for high grain velo
ity. In the limit of extremely high grain velocity we can us
04640
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the simplest approximation for the distribution functio
f n(v1V)5nnd(v1V) and from Eqs.~11! and~17!–~19! ob-
tain

b~V!5~2m/3M !pa2nnV, ~24!

D i~V!5~m/M2!pa2nnV3. ~25!

For D' by similar calculations we find

D'~V!5
D i~V!

4
. ~26!

Therefore, in that limit instead of the Einstein relation w
find another relation between velocity dependableb(V) and
D i(V):

D~V!5
2

3M
mV2b~V!. ~27!

This situation can be classified as far from equilibrium. F
considering the case of uncharged spherical grains, the
plest interpolation relation between the friction and diffusi
coefficients can be suggested:

D~V!5
T

M S 11
2mV2

3T Db~V!. ~28!

The similar interpolations as well as the exact veloci
dependent relations for the arbitrary cross sections can
found from Eqs.~18! and ~19!. As it follows from the rela-
tions considered above,b* (V).b(V) for all the cases with
accuracym/M . In general, by using expansions to high
order of the small relationq/P, the expressions for the func
tions b* (V), D i(V), andD'(V) can be calculated and th
possibility to neglect the difference betweenb* (V) and
b(V) can be established for the considered Boltzmann-t
collisions.

The essential influence of velocity dependence on the
ues of the friction and diffusion coefficients and the violati
of the Einstein relation for the Boltzmann-type collision
take place only for the extreme velocities much higher th
the thermal velocity of the light particles. For the case of lo
grain velocity on basis of general representations~18! and
~19! for the friction and diffusion coefficients, the applicabi
ity of the Einstein relation for arbitrary cross section of sc
tering can be shown.

IV. ABSORPTION COLLISIONS

Now turn to other type of collisions, namely, to the a
sorption collisions, which are typical, for example, in dus
plasmas and some other open systems. As it is well kno
the process of grain charging by absorption of the electr
and ions by grains leads to the stationary~but nonequilib-
rium! state in plasma discharges. In so-called OML~orbital
motion limited! approximation, the electrons and ions a
proaching the grain at a distance less than the grain radia
are assumed to be absorbed. It is clear that the absorp
collisions cannot be described by the Boltzmann-type co
3-4
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sion integral. The appropriate correct form of the absorpt
collision integral has been postulated and applied in R
@14,15#. The rigorous kinetic theory of the electron and io
absorption in dusty plasmas, which exists in parallel with
usual processes of electron and ion scattering by grains,
been developed in Refs.@11,12#, where also the Fokker
Planck equation for the charged grains was justified. Be
we use the simplest form of the Fokker-Planck equation
grains with a fixed charge~distribution by charge assume
narrow, which is often in reality!. Our aim here is to find the
probability transition function for absorption and to demo
strate efficacy of such an approach. More complicated ca
can be considered similarly. We also ignore increase of
grain mass@16,17#, assuming that neutral atoms generated
the course of the surface electron-ion recombination esc
from the grain surface into a plasma. Naturally this proc
also changes the momentum balance for the particles, bu
will not consider this process in our present model. Then
kinetic equation for grains can be written as

d fg~P,Q,t !

dt
5I g~P,Q,t !

5(
a

E dpf a~p!$Wa~p,P2p,Q! f g~P2p,Q!

2Wa~p,P,Q! f g~P,Q!%, ~29!

where f a(p) is the distribution function for the electron
(a5e) and ions (a5 i ) andQ5eZg . The elementary pro-
cess is the absorption of electron or ion with the massma .
The probability of absorption is given by

Wa~p,P,Q!5scS U P

M
2

p

ma
U,QD U P

M
2

p

ma
U, ~30!

wheresc(v,Q) with v[(uP/M2p/mu) is the cross section
for absorption~or collection! of the light plasma particles by
grain in OML theory:

sc~Q,v !5pa2S 12
2eaQ

mav2aD uS 12
2eaQ

mav2aD . ~31!

Below on the basis of Eqs.~29!–~31!, two different but
related problems are solved. At first, to consider the prob
of absorption in simplest form, we accept the next simpl
cation in spirit of Refs.@16,17#, namely, we will consider
absorption of neutral atoms of one sort. It means we puQ
50 and instead of summation bya retain only notation with
the indexn ~for the neutral atoms! in Eqs. ~29!–~31!. Gen-
eralization of this simplest model to the case of charge
sorption with a fixed charge is quite simple.

The second problem in focus of our interest connec
with a real dusty plasma, when there is ion stream and
called drag force, applied to the grains and created by
absorption and ion scattering exists.

Let us start with a system of neutral particles absorbed
grains. The momentum transferred to the grain due to
sorption is equal to the momentum of the atomp colliding
04640
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with the grain. Therefore the probability transitionwc(P,q)
for the considered case can be immediately found by co
parison of Eqs.~1! and ~29!,

wc~P,q!5 f n~2q!scS U P

M
1

q

mU D U P

M
1

q

mU. ~32!

If we choose the Maxwellian distribution for atoms an
assume, to consider the simplest case, that absorptio
purely geometrical,sc5pa2 @the particular case of Eq.~31!
for Q50], we easily obtain with accuracy;m/M that
b* (V).b(V). A simple calculation leads to the relation b
tweenb(V) andD i(V):

D i~V!52M 21Tb~V!. ~33!

This relation is different from the Einstein one already f
low V and for V50 coincides with the result obtained i
Refs. @12,17# as the limiting case (Q50) of the Fokker-
Planck equation for dusty plasmas in the case of the do
nant absorption collisions. Here we found this relation
basis of the theory with velocity-dependent coefficien
based on the probability transition approach develop
above. For a more general form of the probability transitio
which contains the free functionsc(P),x(q) and a small
parameterz!1, w(P,q)5c(P)f(uq1zPu)x(q), it is pos-
sible to show that as above~with accuracy to;m/M )
b* (V).b(V) and the relation betweenb(V) and D i(V)
also has a form independent ofV and different from the
Einstein one:

b~V!

D i~V!
5

2zM2E dqqx~q!S ]f~q!

]q D
E dqq2x~q!f~q!

. ~34!

This consideration shows that the structure of the Fokk
Planck equation for the processes, based on the Boltzm
type collision integrals, is very different from the process
of other type when the Boltzmann-type collisions are n
relevant. For the first type of processes the Einstein rela
is valid, even for the case of velocity-dependent friction a
diffusion coefficients, but in the limit of low grain velocity
uVu!vT . For non-Boltzmann type momentum transferrin
the fluctuation-dissipation theorem does not exist even
V50, though some relation between the friction and diff
sion coefficients can exist~specific for the each type of PT!.
These results have deep consequences for many physica
tems, as well as for the systems of biological nature, e
cells moving in solutions and other, so-called, active walke

V. FRICTION AND DRAG FORCE IN DUSTY PLASMAS

In this section as an application of the developed theo
we consider the problem of momentum transfer from the
stream to grains in dusty plasmas. Due to ion absorption
scattering by grains the drag force, acting on grains, appe
This force plays a crucial role in many experimental obs
vations and, probably, is important for formation of voids
3-5
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dusty plasmas for both ‘‘earthly’’@18–20# and microgravity
@21# conditions; the theory of voids essentially based on
drag force was given in Refs.@22,23#. The ion drag forceDI
consists of two parts, so-called collectionDIc and scattering
DIs ones. In the paper of Barneset al. @24#, the approximate
analytical expressions for the drag collection and scatte
forces were done. Later on the theory of drag force w
actively developed analytically and numerically@23–28# to
improve the description of drag force. It was achieved for
scattering partDIs , in particular, in the recent publication
@27,28#.

Here we are focusing on generalized description of fr
tion and relation between the friction and drag forces. Let
calculate the generalized expression for the friction forceFf
on the basis of the Fokker-Planck equation for the char
grains@Eqs.~3! and~29!#. We calculate hereFf only for ions
because we are interested in the ion part of friction. Gen
alization for many species of the light components~elec-
trons, atoms! is simple. By integration of Eq.~2! on momen-
tum we find the following for the time evolution of th
average momentumPg :

]~ngPgi!

]t
52E dPÃi~P,y! f g~P,t !. ~35!

The functionÃi(P,y) is a generalization ofAi(P) of Eq.
~5! for the case of existence of some additional vector in
probability transition. In the case under consideration t
vectory is the momentum, determined by the velocity of t
ion streamy5Mu:

Ãi~P,y!5E dqqiw̃~P,y,q!. ~36!

To find w̃(P,y,q), when there is ion flow in plasma, it i
quite natural to use the shifted Maxwellian distribution fun
tion of ions.

At first we consider the scattering partFf s of Ff . The
probability transitionw̃s(P,y,q) in this case has the eviden
property

w̃s~P,y,q!5ws~P2y,q!. ~37!

Then we obtain the general expression for the friction fo
Ff s :

Ff s52E dP~P2y!b~ uP2yu! f g~P,t !, ~38!

b~P2y!5
1

~P2y!2E dq@q•~P2y!#ws~P2y,q!, ~39!

Ã~P2y!5~P2y!b~ uP2yu!5E dqqws~P2y,q!.

~40!

In the limit cases of the scattering friction itselfFf 0s[Ff s
.

and scattering ion drag itselfDIs[Ff s
, , Eq. ~38! can be re-

written as
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Ff s
.52E dPPb~ uPu! f g~P,t !, P@y, ~41!

Ff s
,5ngyb~ uyu!, P!y. ~42!

For the momentum distribution function of grainsf g5d(P
2P0) ~if the force is calculated for one particle! Eq. ~38!
takes the form

Ff s52~P02y!b~ uP02yu!, ~43!

and describes both the friction force itself and the drag for
In general, according to Eqs.~38! and ~43!, there is compe-
tition between friction and acceleration. For the limiting ca
of the friction force itselfFf 0s for the grain with momentum
G and immobile ions and the opposite case, ion drag its
DIs with the ion velocityu5G/M , there is a natural relation

Ff 0s[Ff s
.~G!52Ff s

,~G![DIs~G!. ~44!

This picture can be easily generalized for a few species
the light particles. From Eqs.~17! and ~43! we find for Ff s
the representation

Ff s5
m~V2u!

~V2u!2 E dvf i~v2V1u!@~u2V!•v#uvus tr~v!,

~45!

s tr~v!5E
xmin

xmax
dV

ds

dV
~12cosx!. ~46!

Here we use the limits for the angles of integration, taki
account of providing convergence for the Coulomb cro
section in the case of ion-grain scattering. Equation~45! co-
incides in the limit caseV50 with the well known general
formulas for the transferring of momentum from light
heavy particle in the process of scattering, which can
justified from the simple physical arguments, as it was do
e.g., in Ref.@29#. For the opposite limit caseu50 it de-
scribes the friction forceFf 0s for grain. This equation is also
applicable, naturally, for the short-range scattering potenti
when xmin50 andxmax5p. The specific result forDIs in
the caseuuu!VTi

can be written for the Coulomb cross se
tion in the form

DIs52A0MuG2ln L, ~47!

whereA05(A2p/3)(mi /M )a2nivTi
and vTi

[ATi /mi . The

parameterG[e2ZgZi /aTi and usuallyG@1 for dusty plas-
mas. The structure of the generalized Landau logarithm lL
for dusty plasmas is very important and has been rece
considered in Refs.@27,28#. For very strong interaction, the
problem of the correct form of lnL as function of plasma
parameters is still not completely solved.

Let us consider now the generalized collecting frictionFf c
and in particular the collecting drag forceDIc . The formula
of structure similar to Eq.~45! but with V50 and with the
collecting nontransport cross section, instead of transp
scattering cross section, was applied also for the collec
3-6
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drag force in Refs.@23,27,28# and other papers on phenom
enological basis. Our goal here is to investigate the colle
ing drag force by use the PT Eq.~32! for absorption and to
find the relation between the friction force and the fricti
coefficient for the collecting process. Recently in Ref.@13#
the friction coefficientb(V) in dusty plasmas was calculate
explicitly for arbitrary grain velocity and parameterG. It was
found thatb(V) can change sign~‘‘negative friction’’! from
positive to negative for some velocity domain if the para
eterG.1. Here we reproduce the result of Ref.@13# for the
total friction coefficient for a grainb(V) @for the particular
but important caseh[(miv

2/2Ti)!1 and arbitraryG]:

b~h,G!52A0F12G14
na

ni
S Tama

Timi
D 1/2

2
h

5
~123G!

1G2ln LG . ~48!

The terms in Eq.~48! proportional to the atom densityna and
to lnL describe friction, respectively, with atoms and wi
ions by scattering. These terms are always positive. O
terms in Eq.~48! describe negative friction due to ion ab
sorption by grains and are negative in the considered l
caseh!1 if G.1. Negative friction exists for smallh if the
Coulomb scattering is strongly suppressed, when the C
lomb logarithm lnL is small @13,27# ~some additional rea
sons for its reduction are discussed in Ref.@28#!, which is
typical in strong interaction in dusty plasmas. The level
ionization has to be high enough to provide negative value
the friction coefficient. As we know, these conditions
present are not reached in the experimental setups. Opp
nity for manifestation of negative friction in the experimen
requires as we already mentioned the special conditio
From Eqs.~35!, ~36!, and~48!, it follows straightforward by
that the collecting friction force itselfFf 0c for a moving grain
can be written as

Ff 0c52P0b~h,G!. ~49!

To find the generalized collecting friction forceFf c ~and
therefore also the drag force!, we have found the function
w̃c(P,y,q) for collection. The crucial fact is that the relatio
similar to Eq.~37! or ~49! for PT function is not correct for
the absorption in the case when an ion flow exists (uÞ0),
due to the different structure of the PT functions for t
scattering and collection processes. It is the property of
existing kinetic models for absorption in dusty plasmas,
which the surface recombination and atom emission is
taken into account explicity.

To describe the ion stream with the velocityuÞ0 we use
again the shifted Maxwellian distribution of ions. As it
easy to see in this case the PT functionw̃c(P,y,q) can be
expressed viawc determined by Eq.~32!:

w̃c~P,y,q!5wc~P2y,q1mu!. ~50!
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For the momentum distribution function of grainsf g5d(P
2P0) ~if the force is, as above, calculated for one particl!,
the friction Ff c takes the form

Ff c52Ã~P0 ,y!52E dq~q2mu!wc~P02y,q!. ~51!

This equality can be written in the equivalent form

Ff c5mub1~ uP02yu!2~P02mu!b2~ uP02yu!, ~52!

where the coefficientsb i are related with the zero and firs
moments of the PT function:

b15E dqwc~P02y,q!, ~53!

b25
1

~P02y!2E dq@q•~P02y!#wc~P02y,q!. ~54!

Let us consider the simple and practically important ca
when both vectorsP05Mv0 and y are directed parallel or
antiparallel to the same unit vectorl: P05p0l and y5y0l.
Then for the friction, we arrive at the following expressio

Ff c5 l$u0@mb1~ up02y0u!1Mb2~ up02y0u!#

2p0b2~ up02y0u!%. ~55!

Here and below we use velocities related with the mome
p0[Mv0 and y0[Mu0. Equation~55! can be represente
in the equivalent and explicit form:

Ff c52 lH mu0E dv
v• l~u02vv0!

~u02v0!2
f i@v1 l~u0

2v0!#uvusc~ uvu!2mv0E dv
@v• l1u02v0#~u02v0!

~u02v0!2

3 f i@v1 l~u02v0!#uvusc~ uvu!J . ~56!

Let us consider the special cases of Eq.~56!.
~a! v0@u0 ,u0→0. In this case we arrive at the frictio

force Ff 0c :

Ff 0c52mV0E dv
@V0•~v2V0!#

V0
2

f i@v2V0#uvusc~ uvu!.

~57!

This expression coincides with the collecting ion frictio
force, which leads to the negative collecting friction coef
cient for G.1 @13# and to the respective relations~48! and
~49!.

~b! u0@v0 ,v0→0. In this case the generalized collectin
friction Ff c describes the collecting ion drag forceDIc :

DIc5muE dv
u•v

u2
f i@v2u#uvusc~ uvu!. ~58!
3-7
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This equation coincides with the expression for the colle
ing drag force, which has been suggested in Refs.@27,28#.

~c! u0Þ0, v0Þ0. Temperature of ions is lowu(u02V0)u
@vTi , the ion distribution function tends to thed function
nid(v1u2V0). ThenFf c tends to the force directed alon
the ion stream, which we denote asDI0c :

DI0c5mniuu~u02v0!usc~ u~u02v0!u!. ~59!

As it follows from Eq.~59! ion wind in the considered limit
always accelerates grains. Ifu0 is parallel toV0 and they are
close one to another, but both are higher thanvTi , the en-
hancement of the drag forceDI0c occurs with decrease of th
relative velocity u(u02V0)u. It is the consequence of th
OML collecting cross section, which probably can be obse
able for very fast grains, discovered in some experime
@30,31#, or in cryogenic discharges.

VI. ACTIVE PARTICLES

During the last decade, investigation of motion of the se
organized objects, e.g., cells, is in a focus of interest, du
numerous measurements and observations of their dynam
behavior@8,32#. Our goal in this work is to show that con
struction of the relevant probability transition on basis of t
simple physical requirements permits to justify the relev
description of such systems. In particular, we show that
the simplest structure of PT for motion of an active partic
the known~and experimentally verified! structures of the ve-
locity distribution of grains~cells! @32#, which are able to
have a directed motion near a fixed nonzero velocity, can
justified. The coefficients of this distribution are calculate

Let us formulate some general conditions to find t
structure of the PT for active particles. We suppose that
linear momentum, transferred from a grain~cell! to the sur-
rounding medium, is created by loss of the inner energy
this grain. Below we ignore the processes of energy sup
which can be included separately in more complica
schemes.

At first we assume that the transferred to medium mom
tum q!P is distributed near some fixed valueq0. The fre-
quency of generation of the transferring momentumq will be
denoted asm(q). It can be approximated, for example, b
the product of the functions, describing distributions
modulus uqu5q and on the space anglesu,w between the
vectors q and P, if there are no other, besidesq and P,
characteristic vectors for the system. In this simplest case
can put m(q)5n0m1(q)m2(u,w), where n0 is the
q-independent frequency of momentum generation by a g
~cell!. Below we suggest that thew dependence ofm2 is
absent. The distributionm1(q) can be Gaussian or, for th
limit case of very narrow distribution of the transferring m
mentum, can be approximated by thed function m1(q)
5l0d(q2q0)/ q0

2, where l0 is a dimensionless constan
For the functionm2(u) we assume, that the angleu between
the direction of the transferred momentum and the mom
tum of the active grain is enclosed between the valuesp
2u0,u,p, where u0 is some acute angle. Due to thi
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amplification of the grains takes place. Consideration for
2D and 1D cases is evident.

The ‘‘weight function’’ D(u) for the angleu can be in-
cluded to describe the axis-symmetrical nonhomogeneity
amplification for the different anglesu. We can also include
two additional weight functions:S(P) and Y(«2«0). The
first one describes dependence of PT from the modulusP of
the momentumP, the second one describes that moment
transferring is possible only if the inner energy of a gra
~cell! « is bigger than some fixed minimal value of the inn
energy«0, let us sayY(«2«0)5q(e2«0), whereq is the
steplike function.

Under these assumptions, the PT for the momentum tra
ferring w« , due to loss of the inner energy of an activ
particle, can be written in the case under consideration a

w«~P,q!5n0Y~«2«0!S~P!D~u!m1~q!q~u2p1u0!

3q~p2u!. ~60!

The values of the friction and diffusion coefficients follo
from general Eqs.~8!–~11!:

b«~V!522pn0Y~«2«0!
S~P!

P E
0

`

dqq3m1~q!

3E
p2u0

p

du sinu cosuD~u!, ~61!

D«~V!52pn0Y~«2«0!
S~P!

M2 E
0

`

dqq4m1~q!

3E
p2u0

p

du sinu cos2uD~u!. ~62!

To find the total expressions forb(P) and D(p) we have
added to the values~61!, ~62! of b«(P) andD«(P) the parts
of the friction and diffusion coefficients aroused due to c
lisions between the cell, moving with the momentumP, and
the surrounding particles~atoms! of the solution. For the
case of 3D elastic collisions and the hard sphere interact
these parts were calculated on the basis of Eqs.~21! and~22!.
For the velocities of cells essentially less than the charac
istic velocity of atoms we can ignore the velocity-depend
multipliers and consider the parts of the coefficientsbel(V)
5b0 andDel(V)5D0, connected with the elastic collision
as constants. These constants as well as the initial velo
dependent functions~for V,vTa) @see Eq.~23!# are con-
nected by the Einstein relationDel(V)5M 21Tbel(V)
.M 21Tb0.

If we make the natural assumption thatS(P) is a con-
stant, which means that the PTw« is not dependent on the
cell velocity ~as the process, which is determined by t
inner state of the grains!, we find from Eq.~61! that b«(P)
;1/P. Due to this specific dependence, the Fokker-Pla
equation for cells can be written as
3-8
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d fg~V!

dt
5

]

]V H @Vb02K«# f g~V!1@D01D«#
] f g~V!

]V J ,

~63!

where K«.0 is a constant, determined by the equalityb«

[2K« /V and Eq.~61!, andD« is determined by Eq.~62!.
For b0 Eq. ~21! can be used. Finally, the result isb0

58A2TmnaS/(3MApm), whereS5pa2 is the area of the
grain andna is the density of the atoms. The stationary s
lution of Eq. ~63! is the Gaussian distribution:

f g~V!5C expH 2
b0

2DS
S V2

K«

b0
D 2J . ~64!

Here C is the constant of normalization andDS[(D0
1D«).

The velocity dependence of the distribution functi
f g(V) ~64! coincides with the one that has been found in R
@32# on the basis of the phenomenological assumption, c
cerning the structure of the friction coefficient in the Lang
vin equation. This type of the velocity distribution functio
in our consideration is the consequence of physically c
choice of the perturbation transition function. It can be ge
eralized for more complicated and practically importa
cases, when there are one or more~additional toP) vectors,
which determine the direction ofq. It can be some inne
vector, ‘‘driver,’’ which can be orientated on the extern
~e.g., surface! gradients of density, or temperature, or co
centration of some ingredient in the ambient medium. In t
case, naturally, the equilibrium state is not effectively o
dimensional. Active particle~e.g., cell! can turn during mo-
tion. These problems will be considered separately.

VII. CONCLUSIONS

Here we use the simple and effective way for concreti
tion of the Fokker-Planck equation on basis of self-consis
determination of the friction and diffusion coefficients. Bo
are determined as the functionals of probability transiti
This function possesses a very different structure for
Boltzmann-type collisions and the other ones. We found
for the Boltzmann-type collisions and proved that veloci
dependent friction and diffusion coefficients are connec
by the Einstein relation for the velocities of grain less th
thermal velocity of the small particles. At the same tim
there is a crucial violation of the Einstein relation for th
higher grain velocity. Therefore, in general, for the veloci
dependable friction and diffusion coefficients even for t
Boltzmann-type collisions the applicability of the Einste
relation is limited by not very high~nevertheless practically
most important! values of the grain velocity. The velocit
dependence of these coefficients and renormalization of
friction coefficient in 2D and 3D cases as a consequenc
the tensorial structure of diffusion are found. Because
Fokker-Planck equation is single valued also for the veloc
dependent coefficients, the problem of connection betw
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Langevin and Fokker-Planck equation has to be reformula
as a problem of the relevant~to the Fokker-Planck equation!
Langevin equation.

For the non-Boltzmann collisions, e.g., for the absorpt
collisions, the structure of PT follows from the structure
the collision integral, obtained earlier@11,14,15# and leads,
in particular, to the relations different from the Einstein
relations between the coefficients in the relevant Fokk
Planck equation already for the region of low grain velo
ties.

As the example of application of the PT method to t
more complicated systems we considered the general
friction force in dusty plasmas. The scattering and collect
parts of this force are determined by the generalized frict
coefficient, as a function of ion stream and grain velociti
The remarkable fact is that the sign of the collecting fricti
coefficient can be negative for some plasma parameters,
was recently shown@13#. Of course realization of negativ
total friction coefficient for grains for dusty plasmas in e
periment requires special conditions, because other me
nisms of friction exist. The ion drag force in such approa
as well as the friction force itself are the particular cases
this generalized friction. The ion scattering and collecti
drag forces are found and calculated for the various part
lar cases. Some phenomenological expressions, which
been used for calculations before, are rigorously proved
generalized. To compare theoretical results with the exp
ments in dusty plasmas, a more detailed description
forces, which takes into account, in particular, the proces
surface recombination and mass transfer by atom evap
tion has to considered. Such type kinetic theory is in
stage of development and will be published separately.

We also constructed the PT for the active particles~e.g.,
grains or cells! in an ambient medium for some simple sit
ation. On basis of physically clear assumptions we found t
the part of the generalized friction coefficient, responsible
self-motion, can possess the peculiarity 1/P, whereP is the
momentum of a grain. Given also the appropriate usual f
tion mechanism, the stationary solution of the releva
Fokker-Planck equation is Gaussian with a peak aro
some nonzero velocity. Some generalizations of the obtai
results for more complicated cases are suggested.
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